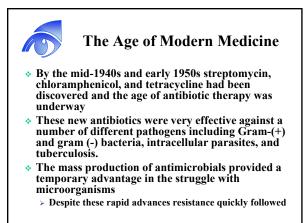
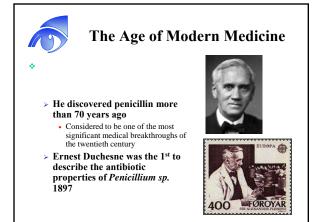

The Battle of Resistance: Treating Infections in the Age of Resistance


Mark T. Dunbar, O.D., F.A.A.O. Bascom Palmer Eye Institute University of Miami, Miller School of Med Miami, FL


$\overline{\mathbf{O}}$

The Age of Modern Medicine

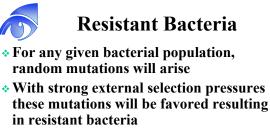
- Prior to Penicillin, the # 1 war-time killer was infection
- * Began being mass produced in 1943
 - > Physicians were finally able to treat many diseases and childhood infections
 - > This marked a new era in modern medicine
- Within 4 yrs of its release, resistance to penicillin began popping up and grew at an alarming rate

How Resistance Develops

6

Bacterial Resistance

- Bacterial become resistant when a mutation occurs in the DNA that protects the bacteria from a chemical
 - > Mutation is only significant if the bacteria colony is exposed to the drug
- "Survival of the fittest" dictates survival occurs in only those capable of mutating


Factors Implicated in Growing Rates of Antibiotic Resistance

- * Microbiological
- > Antibiotic misuse
 * Environmental Factors
- Aging population
- Social behavior
- > AIDS
- International travel

Technical Factors

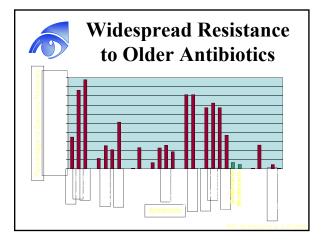
- > Increasing surgical intervention
- intervention > Organ replacement
- Life support systems

* American Academy of Microbiology

- > 17.8 million pounds of antibiotics are used in animals each year
- > Human exposure of these antibiotics is significant

Susceptibility of Multidrug-Resistant Bacteria

- 256 bacterial strains isolated from 164 patients undergoing intraocular surgery b/w 1/2002 10/2002
- * 124 (76%) coagulase-negative Staphylococci
- High level of resistance to penicillin, aminoglycosides, macrolides, ciprofloxacin,ofloxacin
- Gatifloxacin and moxifloxacin had the lowest resistance frequency in the fluoroquinolones antibiotic group


 Newer-generation fluoroquinolones provide excellent broad-spectrum coverage against bacterial flora isolated from conj, despite the high % of multidrugresistant bacteria

Bacterial Resistance

The problem is....

Antibiotics are used extensively

- > Topically
- > Systemically
- > Agriculturally as a growth stimulant
 - Most significant use of fluoroquinolones

MRSA

Methicillin-Resistant Staphylococcus Aureus

Staphylococcus Aures Pharmacology

- Methicillin was an antibiotic used many years ago to treat patients with Staphylococcus aureus infections
- It is now no longer used except as a means of identifying this particular type of antibiotic resistance

Staphylococcus Aureus

- Common bacteria usually found on the skin or in the nose
- Can cause a range of illnesses from minor skin infections such as pimples, impetigo, boils, cellulitis and abscesses...
- To life-threatening diseases such as pneumonia, meningitis, endocarditis, and septicemia
- There are many different types of staphylococcus aureus

MRSA

- * 1st outbreak identified in 1960 's
- Predominantly seen in hospitals, chronic care facilities and parenteral drug abusers
- The prevalence of MRSA isolates in hospitals in the US has risen steadily, such that now about ¼ nosocomial isolates are methicillin resistant

Staphylococcus Aures Pharmacology

- MRSA is a particular strain of staphylococcus aureus that does not respond (is resistant) to many antibiotics
- S aureus was sensitive to penicillin when the drug was 1st introduced, but resistance developed almost immediately as the organism acquired a β-lactamase enzyme that was capable of inactivating drug

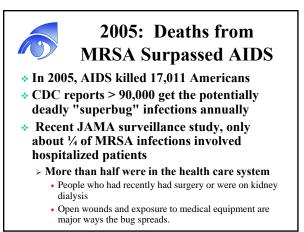
MRSA

Community-acquired MRSA is becoming a significant problem, with the prevalence of MRSA among community isolates expected to reach as high as 25% in the next decade

$\overline{\mathbf{O}}$

Reasons for Rise of MRSA

- More powerful strains of MRSA developing
- An increased number of very sick people in hospital
- More complex medical treatments
 The use of central lines and catheters
- Patients move within and between hospitals more often
- High workloads which result in less compliance with routine hand washing


Risk Factors for MRSA

- Proloned hospital stays
- Prior surgery
- * Seriously ill in intensive care
- * Immunocompromised

Multi-Drug Resistant Bacteria

- * Emerging resistance of *S aureus* has also been demonstrated for streptomycin, tetracycline, chloramphenicol, erythromycin and third-generation fluoroquinolones. T
- The topical 4th Generation fluoroquinolonesare are more potent against MRSA than prior generation fluoroquinolones
 - > They inhibit both DNA gyrase and topoisomerase IV, requiring two genetic mutations for the bacteria to become resistant

MRSA

- About 1/3 of people carry MRSA on their skin or in their nose without knowing it
- * These people are said to be 'carriers' of MRSA
 - > The bacteria are present on the body but don't cause any harm
 - > This is also referred to as being 'colonised' with MRSA
- Most people who carry MRSA in this way don't go on to develop an infection

MRSA Facts

MRSA has evolved into a multitude of genetically distinct strains that vary widely in drug resistance, transmissibility and virulence

MRSA Facts

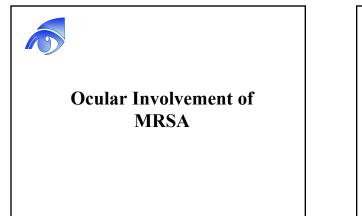
 Non-healthcare workers are now just as likely as healthcare workers to carry MRSA on the conjunctiva and lid margin

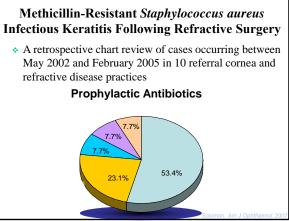
4th Gen FQ Resistant Bacterial Keratitis after Refractive Surgery

Aoshirfar M, J Cataract Refract Surg 2006; 32:515-518

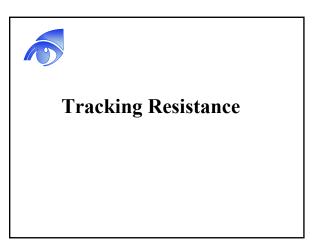
- 2 Cases of Bacterial Keratitis resistant to 4th Gen FQ
- 1st pt Pseudomonas following PRK -> had been treated with Vigamox
- 2nd pt MRSA following LASIK treated with Zymar...and Vigamox
- Culture susceptibilities resistance to both 4th Gen FQ

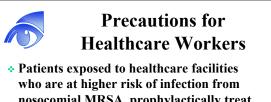
MRSA Fact

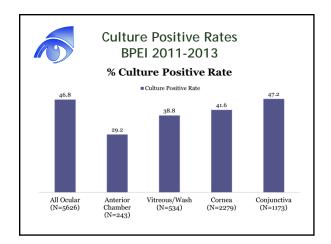

While CA-MRSA strains tend to be less multi-drug resistant, some strains are associated with unusually invasive infections of the eye and orbit


> USA300 clone – CA-MRSA with the PVL virulence marker

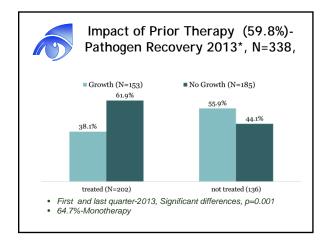
13 Cases of MRSA Following Refractive Surgery


- Multicenter, retrospective chart review of 13 cases of MRSA keratitis following refractive surgery
 - > 9 were either healthcare workers or exposed to a hospital surgical setting
- * 7 pts were prescribed 3rd generation FQ, 1 pt prescribed tobramycin, 1 pt was prescribed erythromycin and 3 were prescribed a 4th generation FQ

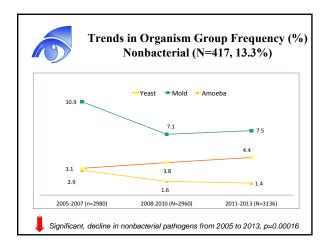


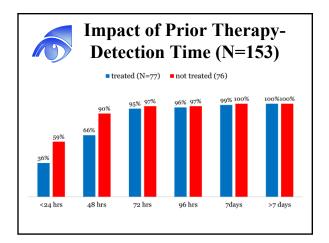

Infectious Keratitis in Refractive Eye Care

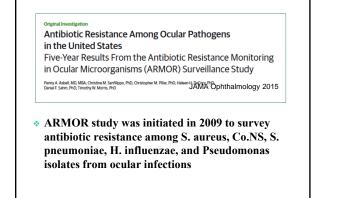
- Clinicians must be alert to the postop patient with signs and symptoms of possible post-LASIK and post-PRK infectious keratitis.
- PRK: Corneal scrapings, cultures, and sensitivities of all cases of focal infiltrates
- LASIK: Lifting the flap, scraping, culturing, and obtaining sensitivities on all cases of focal infiltrates

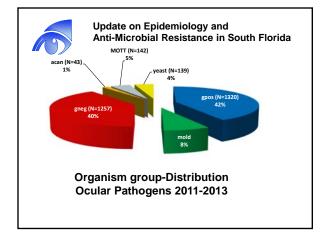


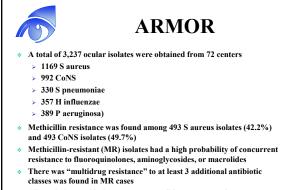
- who are at higher risk of infection from nosocomial MRSA, prophylactically treat blepharitis with lid hygiene and hot compresses preoperatively
- * Consider a nasal swab for MRSA carriage
- Consider bacitracin or a fourth-generation fluoroquinolone or bacitracin for preoperative prophylaxis

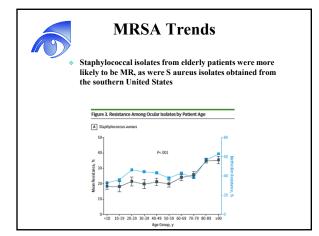


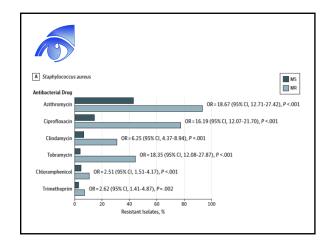


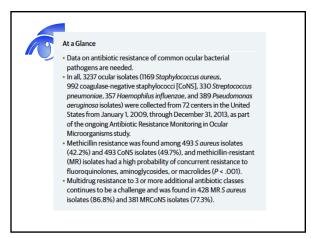

- Trrigating under the flap with fortified vancomycin (50 mg/ml)
- Antibiotics to include better coverage for MRSA-fortified vancomycin every 30 minutes, alternating with topical 4th Gen q 30 min
- Bacitracin ointment or Neosporin ointment to the eyelids qid

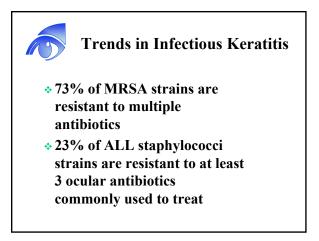



	g Monotherapy Choice 119/184 (64.7%)
	Monotherapy-Presenting Monotherapy-Presenting
Others, N=23)	19.3
Steroids (N=5)	4.2
Antiiral (N=2)	1.7
Antifungal (N=9)	7.6
Aminoglycoside (N=20)	16.8
Fluoroquinolone (N=51)	42.9
Polytrim (N=9)	7.6









The US ARMOR study compared results available from surveillance in 2013 to results from 2012. By the time of this analysis, ARMOR study investigators from 27 US sites had collected a total of 239 isolates of *Streptococcus pneumoniae Staphylococcus aureus*, coagulase-negative staphylococci (CoNS), *Pseudomonas aeruginosa*, and *Haemophilus* influenzae, all organisms frequently implicated in bacterial infections of the eye, and tested them for susceptibility to as many as 16 available ophthalmic antibiotics.¹

Study authors reported that, from 2012 to 2013, antibiotic resistance rates increased among isolates of already problematic strains of staphylococci and *P aeruginosa*. For example, preliminary results suggest that nonsusceptibility of *P aeruginosa* to the antibiotics ciprofloxacin and imipenem may have doubled from the previous year to 14% and 21%, respectively. Nonsusceptibility of isolates of *S aureus* and CoNS also increased slightly year over year, exceeding 50%

ARMOR: 5 Year Results

CONCLUSIONS:

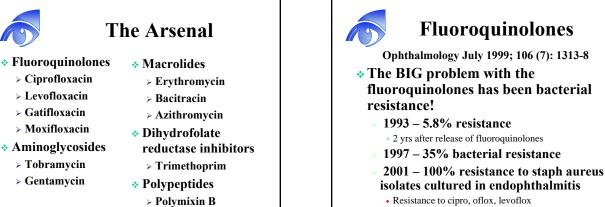
*Resistance to 1 or more antibiotics is prevalent among ocular bacterial pathogens.

*Current resistance trends should be considered before initiating empiric treatment of common eye

In vitro Susceptibility for Select/Common Ocular Drugs.

Antibiotic	MSSA (%S)	MRSA (%S)
	N=190	N=84
Cefazolin	100	0
Erythromycin	98	43
Gentamicin	100	85
Gatifloxacin	93	25
Moxifloxacin	91	31
Trimethoprim -sulfa	99	92

Ophthalmic Antibiotics: Fluoroquinolones


- * The first safe broad-spectrum ophthalmic agents
- * Revolutionized treatment of severe corneal infections
- Very low sensitization rate
- * Excellent safety profile
- * Comfortable
- * No reports of systemic effects

Our Arsenal of Antimicrobial Therapy

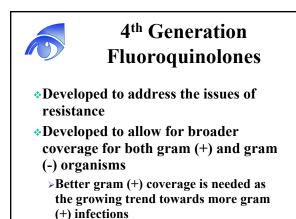
Fluoroquinolones

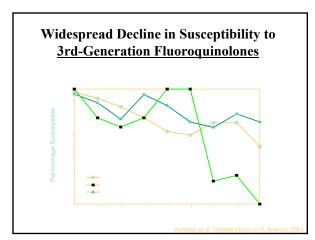
- 1st released for ophthalmic use in early
 1990's
- Represented an important breakthrough for clinicians
- * For the 1st time strong commercially available antibiotics available to treat bacterial conjunctivitis and ulcerative keratitis

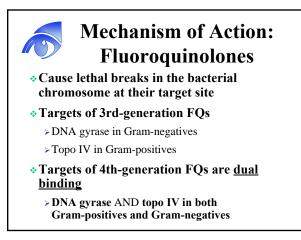
Broad spectrum including pseudomonas

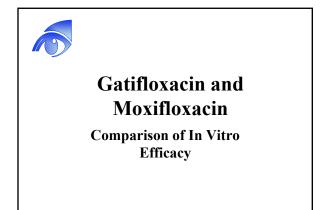
· Resistance to cipro, oflox, levoflox

9

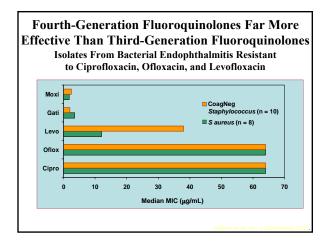

1	ance to FC at al, Ophthalmology A D cultures; 1468 (ugust 2000; 107: 1497	-1502
	<u>1990</u>	<u>1998</u>	
Bact Keratitis	196	137	
Resistance to Staph Aures	11% Cipro and Oflox	28 % Cipro and Oflox	
Resistance to Pseudomonas	0%	0%	
Staph aures Pseudomonas	(27) 29% (51) 54%	(32) 48% (32) 46%	

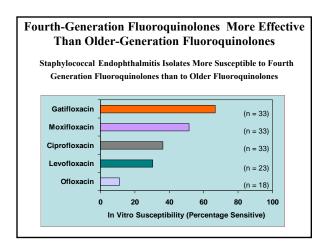

Fluoroquinolones: Resistance

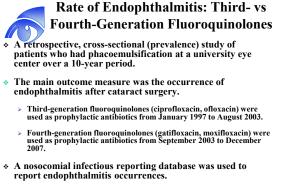

- In vitro tests that compare moxifloxacin with other fluoroquinolones suggest that moxifloxacin is less likely to
 - > Be affected by genetic mutations^{1,2}
 - > Select for resistance^{2,3}

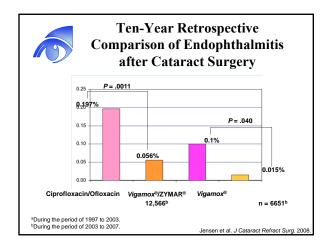

 Tankovic J, et al. J Antimicrob Chemother. 1999;43(suppl B):19-23. 2. Schedletzky H, et al. J Antimicrob Chemother. 1999;43(suppl B):31-37. 3. Balfour JAB, Lamb HM. Drugs. 2000;59:115-139.

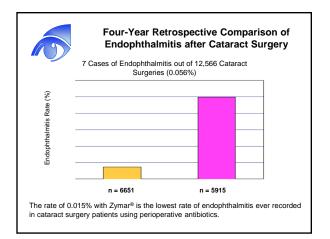
Gol	dstein et al. O	nce to FQ Phthalmology July 1 825 Cases 19	1999; 106 (7): 1313-8	8
		<u>1993</u>	<u>1997</u>	
Bact Ke	ratitis	284	75	
Resista Staph A		5.8% Cipro 4.7% Oflox	35% Cipro 35% Oflox	
Resista Stro		51%	50%	
Grar	n +	81.8%	51.4%	
Gra	n -	18.2%	48.6%	











 Prospectively collected data were retrospectively analyzed to establish endophthalmitis rates.

Vigamox® 2003 Bacterial conjunctivitis Moxifloxacin 0.5%	Besivance TM 2009 Bacterial conjunctivitis Besifloxacin 0.6%	ZYMAXID TM 2010 Bacterial conjunctivitis Gatifloxacin 0.5%
Bacterial conjunctivitis Moxifloxacin	Bacterial conjunctivitis Besifloxacin	Bacterial conjunctivitis Gatifloxacin
conjunctivitis Moxifloxacin	conjunctivitis Besifloxacin	conjunctivitis Gatifloxacin
No preservative	0.01% BAK	0.005% BAK
	5 mL ^a	2.5 mL/83 mean drops per bottle
ted.		
5	e drops per bottle	e drops per bottle 5 mL ^a