CONTACT LENS OPTIONS AND FITTING STRATEGIES FOR THE MANAGEMENT **OF THE IRREGULAR CORNEA**

GORDON SCHANZLIN NEW VISION INSTITUTE

David I Geffen, OD, FAAO

Consultant/Advisor/Speaker

- Alcon
- MA 🖌
- Bausch + Lomb
- Bruder Healthcare
- Revision Optics

Irregular Cornea **Contact Lens Options**

- Standard Soft Lenses
- Custom Keratoconic Soft Lenses
- Corneal Gas Permeable Lenses
- Intra-Limbal Gas Permeable Lenses
- Piggyback and Recess Systems
- Scleral Gas Permeable Lenses
- Hybrid Lenses

Types of Irregular Corneas

DEGENERATIONS

- Keratoconus
 Keratoglobus

- Salzmann's nodular degeneration
 Ehlers-Danlos syndrome
 After infection
- AFTER SURGERY
- Cornea transplant (PK, PKP)
 Radial keratotomy (RK)
 Photorefractive keratectomy (PRK)
- Epikeratophakia

- DYSTROPHIES Cagan's dystrophy Branular corneal dystrophy Lattice corneal dystrophy Meesmann's corneal dystrophy

- After infection
 After traumonic

CL Options: Soft Lenses

- Advantages:
- Comfort
- Centration (draping)
- Limitations:
- Vision (due to draping effect)
- Dehydration
- Hypoxia /microbial contamination

- Hydrokone (Visionary Optics)NovaKone (Alden)
- Kerasoft (dist. By B&L)
- Continental Kone (Continental) Keratoconus lens (Gelflex)
- Soflex (Marietta)
- Ocu-Flex K (Ocu-Ease, Optech)
- UCL -55 (United)
- Flexlens Keratoconus (X-Cell)

CL Options: Corneal GP Fitting Goals

- "Avoid Apical Bearing!"
- Match the periphery of the cornea (if normal)
- "Size Matters": larger more decentered areas of irregularity require larger lenses & OZ
- Address Vision Needs: irregularity, astigmatism, presbyopia

Tandem/Piggyback Contact Lens Fitting In Irregular Corneas

CL Options: Tandem/Piggyback C

- Soft lens component contributes about <u>20%</u> of its power in air to the system
 - Typically low power (+/- 0.50) has <u>negligible</u> influence or net system power
- Use of <u>+ power</u> to somewhat <u>mask</u> corneal irregularity and possibly improve GP centration – ie, use of apx. +6 (≈ +1.2D Ne
- effect)
- Can combine with any GP des

CL Options: New Hybrid CLs

- Combination GP center & Soft periphery
- Advantages:
 - Vision of GP / Comfort of SCL
 - One lens to handle
 - High Oxygen Transmissic
 - Design Options (reg cornea, MFL, KCN, Rev. Geom)

CL Options: New Hybrid CLs

- Historical Disadvantages:
 - Lens tightening over time*
 - Secondary inflammatory response*
 - More difficult with larger and more decentered cones/Irreg. C's
 - Design limitations

Intro To Scleral Lenses Scleral Classifications: New Nomenclature Lens Rests Corneal Entirely On Cornea Lens Rests Partly on Cornea & Corneo-Scleral Partly on Sclera Mini-Scleral Up to 6mm > HVID Lens Rests Scleral Large Scleral More than 6 mm > HVID Entirely on Sclera

PL AN	SEL .	Contact Lens & Anterior Eye			BCLA		1			
Pr Las	edicting est ngis Michaed*	timates of . Eef van der	oxygen ti Worp, Dani room	ransmissit el Brazeau, Ri	illity for si chard Warb	tleral lens r. Claude J. G	es Jassion			
	Clearance	100 µm	125 µm	150 µm	200 µm	250 µm	300 µm	350 µm	400 µm	
Lens Dk										
		291	260	229	167	104	42	-20	-80	
125		264	325	286	208	190	52	.25	-100	
150			391		250	156	0	20	130	
170			443			130		~		
200		405	671	389	283	177	70	-35	-136	
250		583	m	458	333	208	83	-40	-160	
300		729	651	575	417	260	104	-50	-200	
		875	781	687	500	312	125	-60	-240	

Intro To Scleral Lenses **Risk and Benefit Ratio**

Intro Scl Potential In	eral Lenses dications: A Growing List	
Ocular Surface Protection & Therapeutic	 > OSD (Sjagren's KCS, Dry eyes, SJS, OCP, GvHD, Chemical/Ithermal burns, Stem Cell failure, Neurotrophic kerafilis, Delayed Epi- healing, Trichiasis, Entropion/Ectropion, Scieral-Muccasa-Patch Grafts) > Pteryglum/Pinguecua > Off label - Drug delivery/retention? 	
Optical Rehabilitation	 KC/Ectasia PMD/Keratoglobus PKP and other post-surgical corneas (ie, RK) Scaring (ie, Post-trauma, corneal anesthesia) Carneal dystrophies Presbyopia*/Aphakia*/High Ammetropia* 	
Cosmesis	 Scleral Prosthesis ?Painted Iris? Lid Ptosis Crutch? 	

Scleral Indications

- Steep KC comeas
 Flat, post refractive surgery comeas
 The wide array of post graft comea shapes
 Small comeas and large comeas

Design Attribute #3

- Lens adjustments will not affect the rest of the lens fit
 - If fitter wants something changed, they just ask for the change and everything else remains consistent, e.g.:
 - Can change SAG without having to change base curve
 Can increase limbal clearance without having to change the SAG
 - Can modify the shape of the lens without altering the SAG.

Design Attribute #4 • Generous scleral landing area

Design Attribute #5

- ► Toric PCs are available to order
- Scleral landing curves are available in 30 micron steps--flatter or steeper
- You can mix and match them to create the toricity you desire
- Front toric optics can be added to the anterior OZ
 - With back surface scleral zone toricity or with front surface dual elliptical stabilization for rotational stability

Evaluate the Limbal Clearance $\label{eq:relation} \\ \hline \\ Figure 1: Unacceptable limbal beam \\ \hline \\ Further 2: Unacceptable limbal beam \\ \hline \\ Further 2: Clearance the extends beam \\ Imbal with larger diameter limbal beam \\ \hline \\ Further 2: Clearance the extends beam \\ Imbal with larger diameter limbal beam \\ \hline \\ Further 2: Clearance the extends beam \\ Further 2: Cle$

<section-header><section-header><text>

Evaluate the Limbal Clearance

Insufficient Limbal Clearanc

larger diameter

+50 microns if limbal touch is within one quadrant +100 microns if touch/bearing is in two quadrants

Additional microns can be requested ir

Evaluate the Scleral Landing Zone

Fitting the Zenlens

Over-Refract to determine final lens power

- Adjust over-refraction for vertex distant
- Factor in -2.00 power of the Dx lens
- If modifying SAG value from the Dx lens, Base Curve can remain constant so no need to adjust lens power for SAG.
- If cylinder is present in over-refraction, use topography or keratometry to check for lens flexure
- Refer to cylinder correction char

Shadowing of the Lens Edge

- Easy way to assess the edges for excessive lift
 Position slit beam across lens and view the far lens edge

ubleshooting					
PROBLEM	POSSIBLE SOLUTIONS				
Bubbles under lens	Reinstruct on proper application Check for edge lift in one or more quadrants; may require toric or steeper PC Reduce vault, if possible				
Blanching/Redness	May need to flatten PC if occurring in opposing meridians, consider toric PCs				
limbal bearing	Order with increased limbal clearance Go to larger lens diameter				
Debris/Clouding under lens	Typically occurs with flat edge in the superior quadrant; steepen PC or go to toric PC Check for excessive corneal or limbal clearance				
Poor wetting	Try rubbing GP conditioner on lens for 30 seconds, then rinse off and apply saline Address lid hygiene issues				
Poor vision	Ensure proper Rx and lens surface is clean If cylinder is present in the over-refraction, refer to the Cylinder Control Options section on the inside of this card				

Patient AG

- AG: 45 year old Hispanic male
 History of keratoconus
 Had Cornel transplant 2015 in OS
 Advanced keratoconus in OD- contact lens failure
 Having corneal transplant in OD next month

- Evaluate Cettral Cetaratoer
 Adjust Cetaranoe in micros
 Eschiers in diagnostic set is 100 µm different
 Evaluate Mid-Perpheral Clearance
 I Cetaratoerance is deal, base one adjustments can increase narrow
 mid-perpheral clearance and decrease excessive mid-perpheral clearance

- Adjust clearance in micros
 Adjust clearance in micros
 Lower clearances (without buching) aid in centration
 Evaluate Advanced Peripheral System landing on conjunctiva
 Piatten or steepen APS in 30 µm steps
 Toric peripheries are available

Final Result

Patient MP

- Wearing RGP's for past 10 years
 Comfort has decreased and vision not stable
 Wearing time has decreased to 9 hours per day

MP Final evaulation

Visual acuity with Scieral Contacts OD: 20/20 OS: 20/20-2 Wearing time 14 hours per day Very comfortable Patient comments on how clear her visit

Patient OV

- 26 year old Hispanic male
 Referred to our office due to drastic vision change
- Seen by two other eye doctors who could not determine the problem with his eyes and could not provide glasses which worked
 Pentacam confirms diagnosis of keratoconus

Patient OV

 Sphere
 Cylinder
 Axis
 VA

 op
 -3.25
 -1.00
 106
 20/40, -3
 os +0.75 -4.25 106 20/25, -

Patient OV

- Topography shows more aberration in visual axis OD
 Pentacam shows inferior posterior distortion
 Went over options for visual correction: Glasses, soft lenses, RCP's, Hybrids, Sclerals

Patient OV

- Final lenses:
 One Fit 2.0: OD: 8.0 BC / 14.9 dia / -3.75 / std edge

Patient OV

- Visual acuity with contacts: OD 20/20, OS 20/15
- Wearing time 12-14 hurs per day
- Patient very happy with crispness of vision as well as comfort